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Abstract

Analyses are made of the interaction of the nonlinearly steepened, compression wavefront generated by a high-speed

train in a tunnel with the tunnel portal ahead of the train. The ‘micro-pressure’ pulse emitted from the portal can rattle

structures in nearby buildings, and the expansion wave reflected back towards the train can cause discomfort to

passengers. It is concluded that the usual simplified approximation of one-dimensional propagation within the tunnel

provides an adequate representation of interactions of the wave with the portal, and also with ‘windows’ in the tunnel

wall near the portal. It is shown how a discrete distribution of windows can be used to produce a reflected expansion

wave that varies linearly across the wavefront, and how the thickness of that wavefront can be made many times larger

than the thickness of the incident compression wave profile. A detailed analysis of the wave radiated from the portal

reveals that cumulative nonlinear effects of propagation over long distances make little or no contribution to the free-

space radiation of the micro-pressure wave.

r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Low-frequency, large-amplitude pressure waves are generated in tunnels when trains enter and leave the tunnel, and

when trains within the tunnel pass geometrical features such as changes in cross-sectional area or meet an oncoming

train. The amplitude of the compression wave generated by a high-speed train entering a tunnel at speed U4250 km=h,
say, typically exceeds 1.5–2 kPa. Multiple reflections of waves from tunnel discontinuities can create localized regions

where constructive interference produces much higher pressures that can cause discomfort to passengers and railway

personnel within the tunnel. In long tunnels nonlinear steepening of a wavefront can greatly increase the amplitude of

the wave (called the ‘micro-pressure wave’) subsequently radiated from the far end of the tunnel when the compression

wave arrives (Maeda, 2002).

Various tunnel portal modifications and ‘hoods’ (tunnel extensions) are used, principally in Japan, to greatly increase

the rise time of the compression wave generated by an entering train (Ozawa et al., 1978; Ozawa and Maeda, 1988a, b).

This tends to inhibit ‘shock’ formation by nonlinear steepening in a long tunnel, and thereby reduce the impact of the
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uidstructs.2005.05.001

ing author. Tel.: +1617 484 0656; fax: +1 617 353 5866.

ess: mshowe@bu.edu (M.S. Howe).

www.elsevier.com/locate/jfs


ARTICLE IN PRESS
M.S. Howe, E.A. Cox / Journal of Fluids and Structures 20 (2005) 1043–10561044
micro-pressure wave, whose amplitude is proportional to the slope of the compression wavefront impinging on the

tunnel exit. A hood consists of a cylindrical tunnel extension typically up to 50m long (Maeda, 2002) with a set of

windows distributed along its sides or in the roof, from which high-pressure air produced by an entering train can

escape. Proper choice of window sizes and spacings can produce a greatly elongated, smoothly growing compression

wavefront.

However, the presence of tunnel portal modifications also changes the way that a compression wave incident from

within the tunnel is reflected and transmitted at the portal. The likely practical importance of the modified reflection

problem was noted by Vardy (1978), and more recently by Brown and Vardy (1994). Vardy (1978) examined reflection

from flared and homogeneously perforated portals, by a modified form of the method of characteristics for an incident

wave of step-wave profile. The problem was investigated numerically and experimentally by Brown and Vardy (1994);

an analytical procedure was also developed by means of an approximate extension of the Levine and Schwinger (1948)

theory of the radiation of sound from the open end of a thin-walled circular cylinder, and by a similar application of the

corresponding solution due to Chester (1950) for a portal opening into a two-dimensional ‘cutting’.

The more general question of the interaction of sound and shock waves with the open end of a smooth-walled duct

has been examined extensively. The circular cylindrical duct is discussed analytically by Morse and Feshbach (1953) and

Noble (1958); Rudinger (1955, 1957) has investigated experimentally shock wave reflection from the exit; the acoustic

problem with and without mean flow has been examined by van Wijngaarden (1968), van Wijngaarden and Disselhorst

(1979), Disselhorst and van Wijngaarden (1980) and by Peters et al. (1993). Applications of approximate forms of the

linear theory (valid for frequencies not exceeding the first ‘cut-off’ frequency of the duct) to the micro-pressure wave

problem are discussed by Ozawa et al. (1978, 1997).

In this paper theoretical understanding of compression wave reflection and transmission at a tunnel portal is

extended by means of an explicit analysis of the influence of a distribution of discrete windows near the exit, and by

consideration of the likely effects of acoustic nonlinearity outside the tunnel on the micro-pressure wave. The problem is

formulated in Section 2 in terms of the usual linear theory of a compression wave incident on an open end. The

subsequent free-space development of the micro-pressure wave is examined in Section 3 by application of the nonlinear

‘parabolic’ approximation to study nonlinear propagation over large distances. The influence of windows on the

expansion wave reflected back into the tunnel is discussed in Section 4.
2. Formulation

2.1. The incident wave

Compression wave experiments are usually performed at model scale using a highly simplified tunnel geometry. We

shall consider the simplest such configuration where the tunnel is in the form of a thin walled, nominally rigid circular

cylindrical duct. For the purpose of analysis it is sufficient to consider a duct of semi-infinite length of radius R, whose

axis extends along the negative x-axis, with the origin of coordinates x ¼ ðx; y; zÞ taken at O in the centre of the open

end, as illustrated in Fig. 1. This simple model will be modified in Section 4 to include a set of windows in the tunnel

wall distributed with centroids along a line parallel to the tunnel axis.

The incident plane compression wave of pressure pI ðt � x=c0Þ will be regarded as a steepened step wavefront across

which the pressure rises to a maximum over an axial distance �2d, as indicated in the figure, where t denotes time and c0
is the undisturbed sound speed. Although the wave is assumed to have experienced steepening during propagation

through the tunnel prior to its incidence on the exit portal, the wave amplitude p̄, say, is in practice no more than about
Fig. 1. Configuration of the circular cylindrical tunnel portal of radius R, the coordinate axes, and the incident compression wave.
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2–3% of atmospheric pressure, and we can safely ignore nonlinear distortion of the wave within the tunnel over

propagation distances of several tunnel diameters near the portal.

To fix ideas, the incident step wave shown in Fig. 1 is taken in the form

pI ¼
p̄

2
1þ erf

t � x=c0

t

� �� �
; t � d=c0 ¼ constant; xo0, (2.1)

where erfðxÞ ¼ ð2=
ffiffiffi
p

p
Þ
R x

0 e�x2 dx is the error function (Abramowitz and Stegun, 1970). It will also be convenient to

introduce the Fourier time transform p̂I ðoÞ of this wave

p̂I ðoÞ ¼
�p̄

2pi
e�o2t2=4

ðoþ i0Þ
, (2.2)

in terms of which

pI ¼

Z 1

�1

p̂I ðoÞe
�ioðt�x=c0Þ do; xo0. (2.3)

The notation ‘i0’ in Eq. (2.2) indicates that the integration contour in Eq. (2.3) is required to pass above the pole at

o ¼ 0. Definition (2.1) implies that the compression wave arrives at the open end at time t�0.

At full scale, measured values of the compression wave semi-thickness d at the exit portal are rarely smaller than

about 0:5R, even in the absence of countermeasures designed to inhibit wave steepening in the tunnel (Iida, 2003) (the

pressure rise experienced by a stationary observer in the tunnel then occurs over a time �0:03 s). Effective

countermeasures usually ensure that d43R, where typically R�6m at train speeds of, say, 300 km/h.
2.2. Diffraction at the open end

The irrotational interaction of a linear acoustic wave with the open end of a rigid, circular duct can be evaluated

exactly (Noble, 1958). Consider a single harmonic component e�ioðt�x=c0Þ of the step wave (2.1), and temporarily

suppress the time factor e�iot. If this element of the incident wave is written eik0x, where k0 ¼ o=c0 is the acoustic wave

number, the overall acoustic pressure is given by Noble (1958) in the form

p ¼
k0RKþðk0Þ

2pi

Z 1

�1

K�ðkÞK0ðgrÞeikx dk

gK1ðgRÞ
; for r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ z2

p
4R, ð2:4Þ

¼ eik0x �
k0RKþðk0Þ

2pi

Z 1

�1

K�ðkÞI0ðgrÞeikx dk

gI1ðgRÞ
; for roR. ð2:5Þ

In these formulae In; Kn are modified Bessel functions (Abramowitz and Stegun, 1970); the function g � gðkÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

� k2
0

q
is defined with branch cuts extending, respectively, from k ¼ 
k0 to 
i1, such that for real values of k

g ¼ jk2
� k2

0j
1=2 for jkj4jk0j; and g ¼ �i sgnðk0Þjk

2
0 � k2

j1=2 for jkjojk0j, (2.6)

where the positive square roots are taken. The functions K
ðkÞ are, respectively, regular and nonzero in Im k_0, and

satisfy

KþðkÞK�ðkÞ ¼ KðkÞ � 2K1ðgRÞI1ðgRÞ. (2.7)

In addition

K�ð�kÞ ¼ KþðkÞ; K
ð0Þ ¼ 1; fKþðkÞg�k0
¼ c:c: fKþðkÞgþk0

, (2.8)

where ‘c.c.’ denotes ‘complex conjugate’, and

KþðkÞ ¼
ffiffiffiffiffiffiffiffiffiffi
KðkÞ

p
exp

k

pi

Z 1

0

ln½KðxÞ=KðkÞ�dx

x2 � k2


 �
; for Imk ¼ 0, ð2:9Þ

¼ exp
1

2pi

Z 1

�1

ln½KðxÞ�dx
x� k


 �
; for Imk40. ð2:10Þ
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2.3. Free space radiation

At distances jxjb1=k0 from the open end in the exterior, free space region, integral (2.4) can be evaluated by the

method of stationary phase to yield

p��
iR

jxj

J1ðk0R sin yÞ
sin y

Kþðk0Þe
ik0jxj

Kþðk0 cos yÞ
; jxj ! 1, (2.11)

where J1 is the Bessel function of order 1, and y is the angle between the radiation direction x and the positive x-axis.

The corresponding far field representation for the incident wave (2.2) is obtained by multiplying the right-hand side

of Eq. (2.11) by p̂I ðoÞ, restoring the time factor e�iot and integrating over �1ooo1:

p��
iR

jxj

Z 1

�1

J1ðk0R sin yÞ
sin y

Kþðk0Þ

Kþðk0 cos yÞ
p̂I ðoÞe

�ioðt�jxj=c0Þ do; jxj ! 1. (2.12)

For an incident step wave of large rise time tbR=c0 the Fourier transform p̂I ðoÞ is small except when

oR=c0 � k0R51, and Eq. (2.12) can be approximated by replacing the non-exponential terms in the integrand by their

limiting values as k0R ! 0 (when J1ðk0R sin yÞ� 1
2

k0R sin y and Kþðk0Þ=Kþðk0 cos yÞ�1). This yields the well-known

monopole approximation

p�
A

2pc0jxj

qpI

qt
ðt � jxj=c0Þ; jxj ! 1, (2.13)

where A ¼ pR2 is the cross-sectional area of the duct. This formula can also be expressed in terms of the acoustic

particle velocity vI , say, of the incident wave, which satisfies

vI ðt � x=c0Þ ¼
pI ðt � x=c0Þ

r0c0
; xo0, (2.14)

where r0 is the mean air density, i.e.

p�
r0A
2pjxj

qvI

qt
ðt � jxj=c0Þ; jxj ! 1. (2.15)

Approximations (2.13) and (2.15) are also applicable for arbitrary incident wave thickness for sound radiated directly

out of the tunnel along the axial direction (the positive x-axis), because

J1ðk0R sin yÞ
sin y

Kþðk0Þ

Kþðk0 cos yÞ
!

k0R

2
as y ! 0.

Further, also for arbitrary compression wave thickness, the radiation along the x-axis is exactly equal to that produced

if the unflanged duct opening is replaced by a circular piston of area A vibrating at small amplitude velocity vI ðtÞ in an

infinite plane baffle (Morse and Feshbach, 1953; Rayleigh, 1926). This conclusion motivates the analysis given below in

Section 3 (involving a baffled opening) to examine the importance of nonlinearity on the micro-pressure wave radiated

from a tunnel portal. For the step wave (2.1) the corresponding piston velocity is

vI ¼
p̄

2r0c0
½1þ erfðt=tÞ�; t � d=c0. (2.16)

2.4. Wave reflected in the tunnel

The integrand of the time-harmonic solution (2.5) is regular except for poles in Im ko0. The residue theorem may

therefore be used to express the overall pressure wave pR reflected back into the tunnel in the form

pR ¼ �
X1
n¼0

Z 1

�1

p̂I ðoÞk0Kþðk0ÞKþðknÞJ0ðjnr=RÞ

knJ0ðjnÞ
e�iðotþknxÞ do; xo0; roR, (2.17)

where J0; J1 are Bessel functions (Abramowitz and Stegun, 1970), j0 ¼ 0, jn (n40) is the nth positive zero of J1ðzÞ, and

knR ¼ sgnðk0Þjk
2
0R2 � j2nj

1=2 for jk0Rj4jn; knR ¼ ijj2n � k2
0R2j1=2 for jk0Rjojn. (2.18)

Series (2.17) represents an expansion wave whose wavefront is determined by the first term (n ¼ 0), which is the only

term of plane wave form in the reflected disturbance, and propagates parallel to the tunnel axis at the speed of sound.
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For the incident compression wave (2.1), the overall pressure in the vicinity of the expansion wavefront is therefore

given by

p ¼ pI ðt � x=c0Þ þ
p̄

2pi

Z 1

�1

fKþðk0Þg
2

k0 þ i0
e�ik0c0ðtþx=c0Þ�k2

0ðc0tÞ
2=4 dk0; near t þ x=c0�0. (2.19)

In this formula

R ¼ �fKþðk0Þg
2 � �jKþðk0Þj

2e�2ik0‘
0

(2.20)

is the plane wave reflection coefficient for waves of frequency o, and ‘0 is the ‘end correction’ �0:61R when k0R ! 0

(Rayleigh, 1926).

The integral in Eq. (2.19) is computed numerically by first evaluating the corresponding integral for qp=qt, for which

the integrand is finite at k0 ¼ 0, and then using

p ¼ pI þ

Z tþx=c0

�1

qp

qt
dt.

The results of such a calculation are depicted in Fig. 2 by the solid-line wave profiles (——), where the expansion

wavefronts p=p̄ are plotted against c0ðt þ x=c0Þ=R for three incident step waves with d=R ¼ 0:1; 0:5; 1. The wave
Fig. 2. Pressure variation at the reflected wavefront in the tunnel: ——, exact solution (2.19); - - - -, approximation (2.23): (a)

d=R ¼ 0:1, (b) 0.5, (c) 1.
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profiles are practically identical except in the immediate vicinities of the front of the expansions, where the details

depend on the precise arrival time of the head of the compression wave at the open end of the duct. In all cases the

overall width of the expansion wave �2R, irrespective of the width 2d of the incident wave. This is because, to a good

approximation, for these values of d=R the low-frequency content of the three incident waves are essentially identical,

and it is only the low-frequency components of the incident waves that are effectively reflected at the exit.

It is interesting to compare these predictions with the corresponding results obtained in the low-frequency

approximation, where all relevant values of the wave number k0 in the integral of Eq. (2.19) satisfy k0R51. In that case

we can use the plane wave reflection model described by Lighthill (1978) (Chapter 2), according to which the acoustic

admittance Y E of the open end of the cylinder can be approximated by

Y E ¼
iA

r0c0
cot

w
2

 �
; where w ¼ k0‘E þ

ik2
0A

4p
. (2.21)

In this formula ‘E is the end correction as k0R ! 0, and the imaginary part of w represents the effect of radiation from

the open end.

Standard manipulations discussed by Lighthill (1978) show that the reflection coefficient for a time harmonic wave

eik0x (corresponding to Eq. (2.20) above) is given in terms of Y E by

R ¼ �
A=r0c0 � Y E

A=r0c0 þ Y E

� �
¼ �eiw. (2.22)

Hence, the reflected wave pR (corresponding to the integrated term in Eq. (2.19)) becomes

pR ¼ �
p̄

2pi

Z 1

�1

e�ik0c0ðtþx=c0�2‘E Þ�k2
0fðc0tÞ

2
þ2R2g=4 dk0

k0 þ i0

¼ �
p̄

2
1þ erf

c0t þ x � 2‘Effiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ 2R2

p
 !( )

. ð2:23Þ

The broken line curves in Fig. 2 indicate that this formula may be regarded as accurate for an incident step wave with

dXR, and that it provides an acceptable approximation of the expansion wave for d ¼ 0:5R. In all practical

applications of these results, d lies in the range where the plane wave approximation is valid.
3. Influence of nonlinearity on the micro-pressure wave

3.1. The piston model

The baffled piston model discussed in Section 2.3 will now be used to estimate the effect of nonlinearity on the free

space propagation of the micro-pressure wave. The nonlinearly steepened compression wavefront incident on the tunnel

exit is then regarded as an acoustic beam radiating from an axisymmetric source at x ¼ 0, whose subsequent evolution

outside the tunnel is governed in a first approximation by the parabolic KZK equation (Zabolotskaya and Khokhlov,

1969; Kuznetsov, 1971). In terms of axisymmetric cylindrical coordinates ðx; rÞ, the pressure pðx; r; tÞ propagates

according to the following form of the KZK equation:

q
qt0

qp

qx
�

G
r0c30

p
qp

qt0
�

n
2c30

q2p

qt02

� �
¼

c0

2

q2p

qr2
þ

1

r

qp

qr

� �
, (3.1)

where t0 ¼ t � x=c0, and G; n are, respectively, the coefficient of nonlinearity and the acoustic diffusivity, given by

G ¼
gþ 1

2
; n ¼

1

r0
Z0 þ

4Z
3
þ k

1

cv

�
1

cp

� �� �
,

g ¼ cp=cv being the ratio of the specific heats at constant pressure and density, k the thermal conductivity and Z; Z0 are,
respectively, the shear and bulk coefficients of viscosity. We also have r0c20 ¼ gp0 where p0 is the mean air pressure.

Outside the portal the axis of the acoustic beam lies along the x direction from which r represents the transverse radial

distance. The parabolic approximation (3.1) is strictly applicable in the region of the wavefront, in the neighbourhood

of which it may be assumed that transverse variations of the acoustic pressure are slow compared to variations in the

direction of the acoustic axis. Within this approximation the KZK equation retains the influences of nonlinear

distortion, thermoviscous diffusion and weak diffraction of the wavefront.
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Eq. (3.1) is usually cast in nondimensional form by setting

~p ¼
p

p̄
; ~r ¼

r

R
; ~x ¼

x

R=2
; ~t ¼

c0t0

R
, (3.2)

in terms of which Eq. (3.1) becomes

q
q~t

q ~p
q ~x

� ~G ~p
q ~p
q~t

� ~n
q2 ~p

q ~t2

� �
¼

1

4

q2 ~p

q~r2
þ
1

~r

q ~p
q~r

� �
, (3.3)

where

~n ¼
n

4Rc0
; ~G ¼

gþ 1

4g
p̄

p0

� �
(3.4)

and g ¼ 1:4 for air.

The following further change of variables [first proposed in an analysis of periodic waves by Hamilton et al. (1985)]

facilitates numerical integration into the far field:

P ¼ ð1þ ~xÞ ~p; s ¼
~r

1þ ~x
; T ¼ ~t �

~r2

1þ ~x
. (3.5)

In the far field ( ~xb1) in radiation directions making a small angle y with the beam axis, we have s ¼ 1
2

r=x ¼ 1
2
tan y and

RT=c0 ¼ t � x=c0 � r2=2c0x. Therefore, constant values of s correspond in the far field to constant radiation angles y
and constant values of T correspond to wavefront surfaces. The decrease in the amplitude of ~p caused by spreading of

the wavefront is conveniently removed by transforming to the normalized pressure P, which is found to satisfy

q
qT

qP

q ~x
�

~G
1þ ~x

P
qP

qT
� ~n

q2P

qT2

� �
¼

1

4ð1þ ~xÞ2
q2P

qs2
þ

1

s

qP

qs

� �
. (3.6)

The solution of this equation is required subject to the ‘piston source’ boundary condition (2.16) imposed at x ¼ 0.

This condition strictly models a circular piston of radius R vibrating in an infinite plane baffle, although the effect of the

baffle on the evolution of the sharp wavefront should be negligible at high frequencies. When expressed in terms of the

transformed variables, the boundary condition for Pð ~x; s;TÞ becomes

Pð0; s;TÞ ¼

1

2
1þ erf

R

d
ðT þ s2Þ

� �� �
; 0psp1;

0; s41:

8><
>: (3.7)

At any point in the acoustic field the solution of Eq. (3.6) vanishes for ToTL, where TL is sufficiently large and

negative that the pulse from the portal has not arrived. Hence, integration of Eq. (3.6) supplies

qP

q ~x
�

~G
1þ ~x

P
qP

qT
� ~n

q2P

qT2
¼

1

4ð1þ ~xÞ2

Z T

TL

q2P

qs2
þ

1

s

qP

qs

� �
dT . (3.8)

This is solved by constructing a computational grid for TLoToTU and 0ososU , say, with the pulse propagating in

the direction of increasing ~x subject to initial condition (3.7) at ~x ¼ 0. At the edges of the computational grid P ¼ 0,

except at s ¼ 0 where symmetry demands that qP=qs ¼ 0. The values of TL;TU ; sU are chosen to avoid reflections from

the artificial boundaries. The numerical procedure uses a four-point upwinded explicit finite-difference scheme for the

nonlinear term. The diffraction term is modelled in the near field, up to ~x ¼ 0:1, by a fully implicit backward difference

method; for larger ~x a Crank–Nicolson method was used (Lee and Hamilton, 1995). The integral was evaluated using

the trapezoidal rule.

3.2. The micro-pressure wave

Calculated micro-pressure wave profiles (expressed in terms of the normalized pressure P) just outside the portal are

illustrated in Fig. 3 for x ¼ R and for transverse radial distances r ¼ 0; R; 2R; 3R when the incident compression wave

strength p̄ ¼ 4kPa and the semi-thickness d ¼ 0:5R. Acoustic nonlinearity is negligible in the near field, and the profiles

displayed in this figure correspond to the usual predictions of the linear theory of diffraction of high-frequency sound

emerging from a long tube (Ozawa et al., 1978; Levine and Schwinger, 1948; Morse and Feshbach, 1953; Noble, 1958),

according to which there is rapid off-axis attenuation of the signal (with increasing values of r) accompanied by a

characteristic broadening of the wavefront.
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Fig. 4. Influence of nonlinearity on the far field form of the micro-pressure wave P normalized as in Eq. (3.5) and calculated from Eq.

(3.8) using the initial condition (3.7). Solutions are constructed on the exterior tunnel axis (r ¼ 0) at x ¼ 172R for p̄ ¼ 4 and 10 kPa

when d ¼ 0:5R and ~n ¼ 10�6.

Fig. 3. Profiles of the propagating micro-pressure wave P normalized as in Eq. (3.5) and calculated from Eq. (3.8) using the initial

condition (3.7). The compression wave amplitude p̄ ¼ 4 kPa, semi-thickness d ¼ 0:5R and the acoustic diffusivity ~n ¼ 10�6. The

solutions are constructed at an axial distance of one tunnel radius from the portal exit plane at transverse distances r ¼ 0; R; 2R; 3R.

M.S. Howe, E.A. Cox / Journal of Fluids and Structures 20 (2005) 1043–10561050
Nonlinear distortion of the micro-pressure wave is likely to be important only at large distances from the portal, and

then principally in radiation directions along the exterior tunnel axis. However, the calculated results shown in Fig. 4

for r ¼ 0 reveal that for x as large as 172R nonlinearity appears to play a relatively minor role in modifying the profile

of the micro-pressure wave. The wave profile when the incident compression wave amplitude p̄ ¼ 4kPa (typical of

trains travelling at speeds in excess of about 360 km/h) differs only very marginally from that predicted by linear

acoustics (the broken line curve in the figure). Wavefront steepening is still seen to be of marginal significance even

when p̄ is increased to 10 kPa, which is very much larger than any compression wave amplitude encountered in practice.
4. Influence of windows on the reflected wave

4.1. Jet formation at the windows

A window in the wall of a tunnel portal (Fig. 5) behaves as a pressure node at very low frequencies, at which an

incident pressure rise within the tunnel is opposed by the production of an equal and opposite expansion wave which

propagates away from the window in both directions within the tunnel. The situation is different, however, at the higher

frequencies associated with a steepened compression wave pI , because the inertial reaction of air forced through a
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Fig. 5. (a) Circular cylindrical tunnel portal with rectangular windows; (b) air flow from a window.
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window is no longer negligible (Howe et al., 2003; Howe, 2005). The pressure fluctuations produced by the compression

wave have a time scale �R=c0, and the corresponding compression wavefront semi-thickness �d is typically of the same

order as a window diameter, or slightly larger. Therefore, it is usually possible to assume that the local tunnel pressure is

uniform over the inner face of a window, and this approximation will be made in the following. This will not be true for

very elongated windows, however, but they can be modelled analytically by a distribution of adjacent, smaller windows.

Under these circumstances the air flow through the windows can be calculated using a set of empirical equations

proposed and validated experimentally by Cummings (1984, 1986) for circular apertures.

Suppose there are N windows distributed in the manner illustrated in Fig. 5(a) along the side wall of the tunnel portal.

Consider the motion through the kth window of area Ak whose geometric centroid is at x ¼ xko0. A uniform pressure

load pðtÞ within the tunnel causes air to flow through the window forming a jet (Fig. 5(b)); the pressure load outside the

tunnel is assumed to be negligible. Let VkðtÞ denote the mean jet velocity in the plane of the window directed out of the

tunnel. Then (Cummings, 1984, 1986)

‘̄kðtÞr0
dVk

dt
þ
r0VkjVkj

2s2
¼ pðtÞ, (4.1)

where s is a jet ‘contraction ratio’ and ‘̄kðtÞ is a time-dependent window end-correction. For irrotational flow through

the window (no jet formation)

‘̄kðtÞ � ‘w þ 2‘0,

where ‘0 � pRk=4 is the end-correction of the window-opening on either side of the tunnel wall, Rk ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Ak=p

p
is the

equivalent radius of the window, and ‘w is the wall thickness of the tunnel (Rayleigh, 1926). For the real flow ‘̄kðtÞ

depends on jet length

LkðtÞ ¼
Z t

0

jVkðtÞjdt, (4.2)

where the time t is measured from the instant at which VkðtÞ last changed sign. Then (Cummings, 1984, 1986)

‘̄kðtÞ ¼
pRk

4
þ ‘w þ

pRk

4

� �
1þ

1

3

Lk

2Rk

� �1:585
" #,

. (4.3)

The contraction ratio s in Eq. (4.1) can be assumed to be constant to a good approximation. For unsteady flow

s ¼ 0:75 yields predictions that accord well with experiment (Cummings, 1984, 1986; Howe, 2005), and this value is

used below.

We assume one-dimensional (axial) wave propagation within the tunnel. Then, the volume velocity VkðtÞAk of the

flow out of the window generates two equal plane acoustic waves propagating in both directions away from the window.

Before any further interactions occur between these waves and the tunnel exit or with any other windows, they produce

a pressure fluctuation within the tunnel equal to

�
r0c0Ak

2A
Vk t �

jx � xkj

c0

� �
. (4.4)

If we temporarily ignore the presence of other windows, we can account for the open end of the tunnel, where the net

perturbation pressure must vanish at x ¼ ‘E , by introducing an ‘image’ window with centroid at x ¼ �xk þ 2‘E with
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mean flow velocity equal to �VkðtÞ. The pressure pkðx; tÞ within the tunnel attributable to the kth window and its image

can then be cast in the form

pkðx; tÞ ¼ �
r0c0Ak

2A
Vk t þ

jx � xkj

c0

� �
� Vk t þ

jx þ xk � 2‘E j

c0

� �
 �
. (4.5)

This formula is equivalent to using the long wavelength approximation (2.22) for the open-end reflection coefficient

with the neglect of the small contribution from radiation damping.

4.2. Overall pressure in the tunnel

The overall perturbation pressure within the tunnel consists of a linear superposition of the incident pressure pI , the

wave pR reflected from the open end when the presence of the windows is ignored (given to a sufficient approximation

by Eq. (2.23)), and the net radiation from each window:

pðx; tÞ ¼ pI ðt � x=c0Þ þ pRðt þ x=c0Þ þ
XN

k¼1

pkðx; tÞ. (4.6)

This linear acoustic theory formula is applicable sufficiently close to the portal that cumulative effects of nonlinearity

within the tunnel can be ignored.

Each pkðx; tÞ is defined as in Eq. (4.5) by the system of equations

‘̄kðtÞr0
dVk

dt
þ

r0VkjVkj

2s2
¼ pI t �

xk

c0

� �
þ pR t þ

xk

c0

� �
þ
XN

j¼1

pjðxk; tÞ;

dLk

dt
¼ jVkðtÞj;

‘̄kðtÞ ¼
pRk

4
þ ‘w þ

pRk

4

� �
1þ

1

3

Lk

2Rk

� �1:585
" #,

;

k ¼ 1; 2; . . . ;N. (4.7)

The causal solution is required, subject to VkðtÞ ¼ 0; LkðtÞ ¼ 0 ðk ¼ 1; 2; . . . ;NÞ for t large and negative.

4.3. One window

Consider first the canonical case of a single, rectangular window with centroid at x1 and dimensions ‘x; ‘y,
respectively, in the x and azimuthal directions (see Fig. 5), and cross-sectional area A1 ¼ ‘x‘y. For the purpose of

illustration take

x1 ¼ �5R; ‘x ¼ 0:8R; ‘y ¼ 0:4R; ‘w ¼ 0:06R. (4.8)
Fig. 6. (a) Pressure history pI þ pR at the location x1 ¼ �5R of a ‘closed’ window for an incident compression wave of amplitude

p̄ ¼ 4kPa and semi-thickness d ¼ 0:5R. (b) The expansion wavefront and the inward propagating window-generated wave for the

window defined by Eq. (4.8).



ARTICLE IN PRESS
M.S. Howe, E.A. Cox / Journal of Fluids and Structures 20 (2005) 1043–1056 1053
Let the incident compression wave (2.1) be defined by

p̄ ¼ 4 kPa; d � c0t ¼ 0:5R. (4.9)

This is a relatively steep wave whose amplitude is typical of that generated by a train entering the other end of the tunnel

at about 360 km/h when the tunnel ‘blockage’ �0:2 (Maeda, 2002).

Consider first the situation when the influence of the window is ignored (when the window is ‘closed’). The pressure

history at the centroid x ¼ x1 ¼ �5R of the window then takes the form depicted in Fig. 6(a), equal to

pI t �
x1

c0

� �
þ pR t þ

x1

c0

� �
.

In the figure time is measured from the instant that the midpoint of the compression wavefront arrives at the open end

of the tunnel, so that the pressure at the window rises rapidly to p̄ at c0t=R � �5. The pressure is maintained at this

value until the subsequent arrival at c0t=R � þ5 of the expansion wave reflected at the open end.

When the window is open the incident wave pressure rise at the window produces an outflow that generates a

negative pressure pulse p1ðx; tÞ that propagates in both directions from the window. The component propagating into

the tunnel is plotted as the lower curve in Fig. 6(b) within the interval �10oc0ðt þ x=c0Þ=Ro3. At later times the

inward propagating wave becomes positive because of reflection and sign change of the window-generated wave at the

open end of the tunnel. The combination

p1ðx; tÞ þ pR t þ
x1

c0

� �

of this inward propagating pulse and of the reflection of the incident wave from the tunnel portal produces the

expansion wavefront shown in Fig. 6(b). The initial drop in pressure at the front of the expansion wave is caused by the

inward propagating window pulse p1ðx; tÞ, the subsequent decay to zero by the arrival of pR from the open end, and the

later small rise and fall is produced by reflection of the window-generated wave from the open end and further

interactions with the window.

The results shown in Fig. 6 are typical of all ‘one window’ interactions. Variations in the amplitude p̄ and thickness 2d
of the incident wave have no significant impact. Increasing the overall area of the window increases the depth of the

initial negative window pulse, and therefore the initial drop in pressure at the expansion wavefront. Similarly, the

overall time scale (or ‘thickness’) of the negative pulse (�10R=c0 ¼ 2jx1j=c0 in Fig. 6(b)) is larger for windows further

within the tunnel.

4.4. Multiple windows

A distributed system of windows near the portal can be used to produce a reflected expansion wave with an expansion

wavefront that is extensive and smooth. This will be illustrated by cases involving ten windows evenly spaced along the
Fig. 7. The expansion wavefront and the inward propagating window-generated wave for Case 1 of 10 equal windows defined by Eq.

(4.10); the incident compression wave has amplitude p̄ ¼ 4 kPa and semi-thickness d ¼ 0:5R.
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Fig. 8. Uniform and linear window area distributions for Cases 1 and 2.
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side of the portal. In Case 1 the windows are square with sides ‘x ¼ ‘y ¼ 0:4R, and we take

xk ¼ �kR; Ak=A ¼ 0:16=p ¼ 0:0509 ðk ¼ 1; 2; . . . ; 10Þ; ‘w ¼ 0:06R. (4.10)

Fig. 7 illustrates the form of the expansion wavefront and the overall windows-generated wave radiated into the tunnel

(in xo� 10R), when the incident wave is specified as in Eq. (4.9). The expansion wavefront extends over a wave

thickness �20R. The negative pressure wave generated by the windows and radiated into the tunnel begins to form at

the time t�� 10R=c0 at which the incident step wave arrives at the first window at x ¼ x10 ¼ �10R. The front of this

window-generated wave (‘A’ in Fig. 7) marks the front of the extended expansion wave; the further contributions from

this window and from other windows closer to the tunnel exit produce the extended negative pressure pulse shown in

the figure (between ‘A’ and ‘B’); reflection of the combined pressures of the incident wave and the window generated

pressure at the tunnel portal produces (for t40) the fluctuation ‘C’ in the expansion waveform together with a low

amplitude ‘tail’ which is similar to that shown in Fig. 6b for one window.

However, for an environmentally ideal reflected wave the pressure gradient dp=dt should be constant across the main

expansion front (Maeda, 2002; Vardy, 1978; Brown and Vardy, 1994). This ensures that subjectively harmful pressure

transients vary relatively slowly within the tunnel. The ideal can more nearly be achieved by using an array of windows

of variable size. The windows in Case 1 have the uniform window distribution corresponding to the solid circles in

Fig. 8. The open circles represent the simplest generalisation in which the window areas decrease linearly with distance

into the tunnel, and this is taken to define Case 2:

xk ¼ �kR; Ak=A ¼ 0:16ð11� kÞ=5:5p ðk ¼ 1; 2; . . . ; 10Þ; ‘w ¼ 0:06R. (4.11)

In Case 2 the overall fractional window area
P

k Ak=A � 0:509 is the same as in Case 1, and the slope of the linear

variation has been chosen arbitrarily so that windows in Cases 1 and 2 have roughly the same area near the centroid

x ¼ �5:5R.

The corresponding reflected waveforms plotted in Fig. 9 are very similar to the corresponding profiles in Case 1,

except that the pressure variation across the expansion wavefront is essentially linear over the main region of change.

The fluctuation near c0ðt þ x=c0Þ=R�0 and the positive tail at positive retarded times are both similar to those in Case 1.

The magnitude of the fluctuation (‘C’ in Fig. 7) decreases as the semi-width d of the incident wave increases. When

effective countermeasures (Maeda, 2002) are used to control the profile of the compression wave generated by a train

entering the far end of the tunnel, the wave-front thickness 2d can usually be assumed to exceed, say, 3R. The expansion

wave for this incident wave in Case 2 is shown in Fig. 10. The waveforms are both smoother, because the incident

pressure variations occur over distances much larger than the diameter of a typical window, and the fluctuation at ‘C’ is

much diminished.
5. Conclusion

The amplitudes of compression waves generated by a high-speed train within a tunnel can be as large as 3% or 4% of

the mean atmospheric pressure. This relatively weak pressure perturbation constitutes a significant disturbance when

regarded as sound, to which it is more akin after travelling within a long tunnel and experiencing nonlinear wave
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Fig. 9. The expansion wavefront and the inward propagating window-generated wave for Case 2 of 10 windows of variable area

defined by Eq. (4.11); the incident compression wave has amplitude p̄ ¼ 4 kPa and semi-thickness d ¼ 0:5R.

Fig. 10. The expansion wavefront and the inward propagating window-generated wave for Case 2 of 10 windows of variable area

defined by Eq. (4.11); the incident compression wave has amplitude p̄ ¼ 4 kPa and semi-thickness d ¼ 1:5R.
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steepening. The ‘micro-pressure’ pulse radiated from the tunnel portal when a steepened compression wave arrives can

be particularly loud and startling, and can rattle structures in nearby buildings. However, it appears from our results in

Section 3 that even for the most intense micro-pressure waves encountered in practice, nonlinear effects of propagation

outside the tunnel are unlikely to be of any great importance.

The expansion wave reflected back into the tunnel ultimately meets the train within the tunnel and may cause

discomfort to passengers and personnel. Our analyses of the expansion wave in this paper are complementary to

previous studies reviewed by Maeda (2002) and those of Vardy (1978) and Brown and Vardy (1994), and indicate that

the usual long wavelength, one-dimensional wave propagation approximation can be used to study the interaction of

steepened waves with a portal, and also with windows distributed along the tunnel wall near the portal. Windows are

usually used at a tunnel entrance to inhibit wave steepening in a long tunnel. For tunnels with dual tracks these same

windows will interact with an impinging compression wave generated by a train entering at the other end, and produce

an expansion wave whose wavefront profile depends on the distribution of the windows and their dimensions. For
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single track tunnels in which trains travel in one direction only, our calculations confirm that window size and

distribution can be adjusted to reduce the impact of the reflected expansion wave by ensuring that the pressure changes

at an approximately constant rate across an extended wavefront whose thickness is many times larger than the front of

the incident compression wave.
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